شما هنوز به سایت وارد نشده اید.
سه شنبه 06 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 21,822
بازدید دیروز: 25,397
بازدید کل: 157,728,119
کاربران عضو: 1
کاربران مهمان: 93
کاربران حاضر: 94
A comparative analysis of machine learning systems for measuring the impact of knowledge management practices
Abstract:
Knowledge management (KM) has recently emerged as a discrete area in the study of organizations and frequently cited as an antecedent of organizational performance. This study aims at investigating the impact of KM practices on organizational performance of small and medium-sized enterprises (SME) in service industry. Four popular machine learning techniques (i.e., neural networks, support vector machines, decision trees and logistic regression) along with statistical factor analysis (EFA and CFA) are used to developed predictive and explanatory models. The data for this study is obtained from 277 SMEs operating in the service industry within the greater metropolitan area of Istanbul in Turkey. The analyses indicated that there is a strong and positive relationship between the implementation level of KM practices and organizational performance related to KM. The paper summarizes the finding of the study and provides managerial implications to improve the organizational performance of SMEs through effective implementation of KM practices
Keywords: Knowledge management Machine learning Predictive modeling Service industry Impact analysis
Author(s): .
Source: Decision Support Systems 54 (2013) 1150–1160
Subject: مدیریت دانش
Category: مقاله مجله
Release Date: 2012
No of Pages: 11
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه