شما هنوز به سایت وارد نشده اید.
دوشنبه 03 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 19,471
بازدید دیروز: 19,661
بازدید کل: 158,509,960
کاربران عضو: 1
کاربران مهمان: 206
کاربران حاضر: 207
Sales forecasting for computer wholesalers: A comparison of multivariate adaptive regression splines and artificial neural networks
Abstract:
Artificial neural networks (ANNs) have been found to be useful for sales/demand forecasting. However, one of the main shortcomings of ANNs is their inability to identify important forecasting variables. This study uses multivariate adaptive regression splines (MARS), a nonlinear and non-parametric regression methodology, to construct sales forecasting models for computer wholesalers. Through the outstanding variable screening ability of MARS, important sales forecasting variables for computer wholesalers can be obtained to enable them to make better sales management decisions. Two sets of real sales data collected from Taiwanese computer wholesalers are used to evaluate the performance of MARS. The experimental results show that the MARS model outperforms backpropagation neural networks, a support vector machine, a cerebellar model articulation controller neural network, an extreme learning machine, an ARIMA model, a multivariate linear regression model, and four two-stage forecasting schemes across various performance criteria. Moreover, the MARS forecasting results provide useful information about the relationships between the forecasting variables selected and sales amounts through the basis functions, important predictor variables, and the MARS prediction function obtained, and hence they have important implications for the implementation of appropriate sales decisions or strategies
Keywords: Sales forecasting Computer wholesaler Multivariate adaptive regression splines Artificial neural networks IT industry
Author(s): .
Source: Decision Support Systems 54 (2012) 584–596
Subject: تولید
Category: مقاله مجله
Release Date: 2012
No of Pages: 13
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه