شما هنوز به سایت وارد نشده اید.
شنبه 03 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 7,026
بازدید دیروز: 52,631
بازدید کل: 157,661,029
کاربران عضو: 0
کاربران مهمان: 83
کاربران حاضر: 83
Adaptive learning in service operations
Abstract:
We propose a decision analytics approach that leverages adaptive learning in the refinement of service operations. We aim to integrate service design and service pricing with downstream operational decision-making related to service provision. This approach involves: collecting consumer data and establishing consumer behavior models; integrating consume behavior models with models for service operation decision-making; and iteratively evaluating service designs based on service delivery performance that evolves over time due to learning. We discuss how this approach enables service providers to set time-differentiated prices and evaluate the impact on transportation network performance. We use agent-base simulation to illustrate the application of our approach to the operations of a public rail transportation firm in a European urban setting. Our findings suggest that knowing the impacts of consumer responses in service operations is essential for devising cost-effective and value-bearing service designs. Our approach can support service providers who wish to adjust their pricing, consumer demand and capacity management models, and to develop more effective market forecasts of performance through adaptive learning, in the presence of “big data” from consumers and operations.
Keywords: Adaptive learning Choice modeling Consumer behavior Pricing Public rail transportation Rational expectations Service operations
Author(s): .
Source: Decision Support Systems 53 (2012) 306–319
Subject: بازاریابی
Category: مقاله مجله
Release Date: 2012
No of Pages: 14
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.